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1 Introduction

The prevailing common wisdom is that Einstein’s gravity –together with a quantum-field-

theory of matter– is only an effective, large-distance description of physics that requires a

consistent ultraviolet completion. Any such completion (as provided, for example, by string

theory) will modify physics below a length scale lUV, the ultraviolet (UV) cutoff. The goal

of this paper is to prove a universal upper bound on the dimensionless effective gravitational

coupling for all scales larger than the cutoff scale in all such theories of quantum gravity.

Let us define the gravitational analogue of ’t-Hooft’s coupling1

λG(l) = N(l)
l2P
l2

, (1.1)

where lP is the Planck length2 lP = G
1/2
N and N(l) is the number of light species at the

scale l (to be defined precisely later). We will show, under some further mild assumptions

to be specified below, that at the cutoff scale λG(lUV) < 1 and hence that

λG(l) < 1 for l ≥ lUV. (1.2)

This is the main result of our paper.

The bound (1.2) has appeared previously in several contexts [1–4]. In [1] and [2]

the relation (1.2) was introduced in the context of perturbative renormalization of the

1For the sake of clarity our discussion refers to four spacetime dimensions, but our results can be

straightforwardly extended to a general number D of spacetime dimensions.
2We use units in which c, ~, kB = 1 and neglect purely numerical factors throughout the paper.
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graviton kinetic term by species loops. Barring possible cancelations, this contribution is

proportional to the number of species, suggesting that in a theory with many species there

is a natural hierarchy between the Planck mass and the cutoff.

The derivation of [3, 4] was based on using non-perturbative BH arguments, show-

ing that BHs obeying certain well-defined conditions of semiclassicality (to be elaborated

below) cannot exist beyond the scale

lSCBH ≡ lP
√

N(lSCBH) , (1.3)

and then asserting that lSCBH bounds lUV, thus implying the bound (1.2). The key point

of [3, 4] is this connection between lSCBH and lUV. However, the analysis was limited by

the class of theories in which classical gravity at short-distances never becomes weaker

than Einsteinian gravity. One of the novelties in our case is, that we show that any other

situation is inconsistent (i.e., short-distance gravity can never be weaker than Einsteinian

gravity) and thus the bound in absolute. The scale lSCBH was first discussed in [5] in the

context of a different bound on the number of species from vacuum stability. There the

scale lSCBH was used to find the range of validity of the semiclassical arguments.

To the best of our knowledge bounds of the form (1.2) were first discussed in connection

with cosmological entropy bounds [6] where it was suggested that the temperature T of

a radiation dominated universe is universally bounded T 2 < M2
P /N , where MP = 1/lP

is the Planck mass. The proposal was then extended to a fixed region at temperature T

in [7]. Previously, using the Generalized second law it was shown that the scalar curvature

R satisfies a similar bound R < M2
P /N in Einstein gravity [8] and in string theory [9].

The central question that we investigate and answer in the current work is whether a

sensible consistent classical modification of Einstein gravity could exist that would allow

semiclassical BHs whose size is smaller than lSCBH. If any such modification would exist,

it would imply the existence of a new semiclassical gravitational regime beyond the scale

lSCBH. If this were so (1.2) would not be universal, rather it would bound the scale of new

gravitational physics. In the present paper we show that (1.2) is universal. We first show,

that lSCBH is an absolute lower bound on the size of semiclassical BHs in any consistent

theory of gravity. We then show that in any consistent theory of gravity lSCBH < lUV.

Adding some reasonable assumptions about the dependence on l of N(l) we prove the

bound (1.2) in its full generality.

2 Assumptions on semiclassical black holes

Let us consider neutral static and non-rotating BHs. They can be described in terms of

three parameters: the mass M , the Schwarzschild radius RS and the inverse temperature

β = 1/T . In Einstein gravity these three parameters are related in a simple way. While

the existence of such relations is guaranteed by the no-hair theorem [10], we will leave their

exact form unspecified in order to allow for possible modifications of Einstein’s gravity

above a certain energy scale.

Following [3] let us define semiclassical BHs as those satisfying the following intuitive

physical conditions. That the BH size and inverse temperature decrease at a speed slower

– 2 –
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than the speed of light (a) − dRS

dt < 1, (b) − dβ
dt < 1; That the fractional change of

the mass of the BH be small during both the thermal and the light crossing time scales,

(c) − RS

M
dM
dt < 1, (d) − β

M
dM
dt < 1 and that the BH be metastable (e) Γ

M < 1. Here the

definition of Γ is the same as for the elementary species: the inverse of the time it takes

for the first transition to a lower energy state via the emission of a light quantum.

We make two basic assumptions about the nature of semiclassical BHs:

i) that they emit as black bodies, so that:

− dM

dt
= N(β)β−4R2

S . (2.1)

Here N(β) is the number of light species into which the BH can decay. We have ig-

nored numerical grey factors and additional numerical factors related to the statistics

of the species. None of the decay channels of the BH are expected to be parametri-

cally suppressed at energies ∼ 1/β which is the main energy range of the BH emission.

Since we assume that the BHs are black bodies it follows that N(β) is equal to the

number of species that can be in thermal equilibrium at (inverse) temperature β.

ii) that they are perfect quantum emitters i.e. that they cannot either emit any particles

classically nor can their emission be controlled classically. This implies that the

(quantum) wavelength of the particles they emit is not smaller than RS . Since,

according to our first assumption, the semiclassical BHs radiate like black bodies,

this implies that R−1
S , being the energy of the emitted quanta, also bounds the BH

temperature i.e.

RS/β ≤ 1. (2.2)

We will show that for a neutral classically-static non-rotating BHs the above inequality

is saturated.3

We can now substitute eqs. (2.1), (2.2) into inequalities (a)−(d) and, after some simple

algebra, obtain the two following inequalities

RSM > N(β)
d ln RS

d ln M
(2.3)

RSM > N(β). (2.4)

In the following section we show that they reduce to the single inequality (2.4). Finally, the

inequality (e) is also implied by the above one. Indeed, for a black body, −dM/dt = ΓT

so Γ/M < 1 is equivalent to inequality (d).

3 A bound on the effective gravitational coupling

3.1 Einstein gravity

Let us consider for the moment the case of Einstein gravity with a constant and fixed

number of light metastable species N (to be defined more precisely below). In this case

3 The assumption of classical time independence is important for our analysis. Otherwise, for micro-

scopic semiclassical BHs that are localized in compact extra dimensions the condition (2.1) can be easily

violated [3]. See Sect (4.1) for further discussion of this point.
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M = M2
P RS and RS/β = 1. Then inequalities (2.3) and (2.4) are equivalent and imply that

RS > lP
√

N = lSCBH (3.1)

and using the definition (1.1) of λG

λG(lSCBH) < 1. (3.2)

Additionally, the bound (3.1) implies that semiclassical BHs of size smaller than lSCBH

cannot exist. We will show below that gravity can no longer be treated as weakly coupled

below that length scale. Thus the effective description that we have used breaks down and

the scale lSCBH should be considered as a lower bound on the actual short distance cutoff

of the theory:

lUV ≥ lSCBH. (3.3)

Combining (3.3) with (3.2) and since λG(l)/λG(lUV) = l2UV/l2 we obtain

λG(lUV) < 1. (3.4)

From this inequality it follows that λG(l) < 1 for l ≥ lUV, which is the result announced

in eq. (1.2).

We will prove bound (3.3) by showing that the opposite assumption lUV < lSCBH leads

to a contradiction. For this we generalize the two-observer thought experiment described

in [4] where a collapsing distribution of matter, for example, dust, was considered. Let

the total mass of this distribution be M and a corresponding (would-be) Schwarzschild

radius be RS > lSCBH. If lUV < lSCBH it is possible to prepare an initial distribution

of matter which would cross into its own Schwarzschild radius RS while the curvature

is smaller than 1/l2UV. Now consider two observers, one (Alice) is observing the collapse

from the far away while the other (Bob) is a freely-falling with the collapsing matter. The

equivalence principle requires that Alice and Bob should agree on the fate of the matter

distribution if they are in causal contact with each other. Bob can continuously monitor

the matter density and the curvature, by measuring the tidal forces, and finds that the

curvature and the matter density are always small so quantum corrections to any classical

process are small. Alice, on the other hand, sees a violent decay of a quantum mechanical

object over a time scale shorter than RS . Since Alice and Bob remain in causal contact

during the collapse because a BH horizon does not have time to form, they can compare

their results and verify their disagreement on the fate of the collapsing matter. The issue

of whether or not during his uninterrupted classical journey Bob would eventually end up

in a singularity is irrelevant to our argument since Bob and Alice have enough time to

compare their observations before any high curvature region is formed.

Let us now allow N to depend on l. To discuss this case we need to define N more

precisely. We wish to consider theories that at an energy scale Λ = 1/l have a finite number

N(l) of light species whose mass is smaller than Λ, m < Λ and whose decay width is smaller

than their mass Γ < m. Of particular interest is the case that the energy scale Λ is the

UV cutoff scale ΛUV = 1/lUV. The number N(l) includes the graviton and possibly other
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gravitational degrees of freedom and the decay width Γ is defined as the inverse of the

lifetime of the state which is the time that it takes for the first transition to a lower energy

state via the emission of a light quantum. We shall assume that the coupling of all the

light species N(l) is such that they can be at thermal equilibrium at (inverse) temperature

β = l. We shall consider only metric theories of gravity and define the scale lUV for such

theories as the scale above which exchanges of metric perturbations in elementary particle

processes become strong. Obviously, it follows that for curvatures less than 1/l2UV gravity

is weak and semiclassical. It may well be that Einstein’s gravity is modified for scales well

above lUV, for example, if large extra dimensions of size R > lUV exist.

Allowing N to depend on l we have λG(l)
λG(lUV) = N(l)

N(lUV)
l2
UV

l2
. To prove the bound in this

case we need to add the reasonable assumption that the ratio N(l)l2P /l2 is maximal at the

highest scale l = lUV. In other words, we assume that the unlikely possibility that N(l)

grows faster than (l/lUV)2 in the infrared is not realized. From inequality (3.4) and the

assumption that that N(lUV)l2P /l2UV is maximal it follows that λG(l) < 1 for l ≥ lUV, as in

the case for constant N .

3.2 Extensions of Einstein gravity

Let us consider a general theory of gravity which is not necessarily Einstein’s. We wish to

show that the bound (3.2) holds for any such extension provided it is a consistent one.

We will do so by showing that, for a given Schwarzschild radius RS , the BH mass M

and thus the product MRS is maximal in Einstein gravity. This implies that lSCBH is the

shortest scale for any consistent semiclassical description of gravity. Since, for a given M ,

the Schwarzschild radius RS is the largest in Einstein gravity, the proof of bound (3.3) by

the two-observers thought experiment remains valid too. In other words, we will show that

an observer attempting to determine the BH mass by measuring a free-fall acceleration of

a probe source can only detect a stronger acceleration than the one she would detect at

the same distance if the theory were Einstein gravity.

In order to quantify this argument, let us consider a metric perturbation about flat

spacetime, gµν = ηµν + hµν . This metric perturbation is sourced by the BH. The key point

is that outside the BH horizon gravity is weakly coupled. Thus, the leading gravitational

process contributing to the acceleration of the probe source in the one-particle exchange

amplitude. In a generic weakly-coupled theory of gravity, hµν can be decomposed into

the spin-2 and spin-0 states. Other spins do not contribute at the linear level, due to

the conservation of the source, and are therefore irrelevant. The one particle exchange

amplitude among the BH and the probe, G ≡ tµν〈hµνhαβ〉Tαβ can be decomposed into

irreducible representations as follows,

G =
1

M2
P

tµνT µν − 1
2 tµµT ν

ν

p2
+

∑

i

1

M2
i

tµνT µν − 1
3tµµT ν

ν

p2 − m2
i

+
∑

j

1

(M j)2
tµµT ν

ν

p2 − (mj)2
, (3.5)

where we have explicitly separated the massless spin-2 (two physical polarizations) massive

spin-2 (five physical polarizations) and spin-0 contributions respectively. Mi, (M j) are the

coupling strengths and mi, mj are the masses of spin-2 and spin-0 states respectively.

– 5 –
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Equation (3.5) is the most general ghost-free structure for the exchange between the

conserved energy-momentum sources, which in addition requires that all the coefficients

are positive [11]. Then all the interactions in eq. (3.5) are attractive, so they cannot induce

mass screening that reduces the acceleration of the probe. It is also clear that a possi-

ble running of the coupling constants MP (p2), Mi(p
2), M j(p

2) or masses m2
i (p

2), m2
j(p

2)

with the momentum (or distance) cannot change this conclusion, since at any scale the

decomposition (3.5) should be valid as a ghost-free spectral representation [11]. For ex-

ample, a mass-screening of a gravitating source would take place if the strength of the

first term in (3.5) decreases in UV. This is impossible in a ghost free theory. If the spec-

tral function ρ(s) is positive-definite the spectral representation of the scalar propagator
1

M(p2)p2 =
∫

ds ρ(s)
p2−s

mandates that M2(p) can only decrease in the UV.

We may now evaluate hµν(r), taking into account all the additional modes that can

contribute to this exchange h00(r) = − M
M2

P

1
r

(
1 +

∞∫
0

dmρ(m)e−mr

)
. As we have discussed,

the spectral function ρ(m) is positive definite for a ghost-free theory and by choosing the

lower limit of the integral I(r) =
∞∫
0

dmρ(m)e−mr we have implemented the requirement

that all masses are positive.

In this approximation the position of the horizon RS is approached for h00(RS) = −1,

M = M2
P

RS

1 + I(RS)
. (3.6)

On the other hand, the temperature, in this approximation, is given by T = dh00/dr|r=RS
,

so that, in agreement with eq. (2.2),

TRS = 1 +

∣∣∣RSdI(RS)
dRS

∣∣∣
1 + I(RS)

∼ 1 , (3.7)

where we have used that I(RS) is cutoff at m = R−1
S . In order to prove that the bound (2.4)

is sufficient we need to bound the factor d ln RS

d lnM
in eq. (2.3). From eq. (3.6) we find

1

M2
P

dM

dRS
=

1

1 + I(RS)


1 +

RS

∣∣∣dI(RS)
dRS

∣∣∣
1 + I(RS)


 = TRS

1

1 + I(RS)
, (3.8)

where the last equality is obtained using eq. (3.7). Eq. (2.2) then implies that d lnRS

d lnM
= 1.

Hence we only need to prove that the product MRS is maximal for Einstein theory.

This follows immediately from eq. (3.6): since for a consistent theory I(RS) is positive, the

maximal value for M is reached when I(RS) = 0, namely in Einstein’s theory.

One might question our use of the linear theory in order to establish the position of the

horizon, which certainly lies outside the linear regime. This can be answered by making

the reasonable assumption that the linear theory must be valid at distances r ≫ RS

not only in Einstein’s theory but also in any non-pathological extension of it. It is then

easy to argue that, at some given M and MP , it is impossible to reduce RS by any such

modification of Einstein’s gravity. Indeed, if this were the case, the expression given above

– 6 –
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for h00(r) would imply that, at distances of the order of Einstein’s horizon, h00(r) ≪ 1

both in the modified-gravity theory and, by positivity of I(r), in Einstein’s, leading to a

clear contradiction.

We have thus shown that the length scale lSCBH is the shortest scale below which

semiclassical BHs do not exist also in an arbitrary consistent extension of Einstein’s gravity

theory. Combining this with the argument leading to (3.3) completes the proof of our claim.

4 Examples

In this section we present two examples of generalized theories of gravity. The first is

Einstein gravity in a compactified higher-dimensional spacetime and the second is weakly

coupled string theory. In the two examples the microscopic description of the theories as

well as the effective description are both known so our assumptions and results can be

explicitly checked and verified.

4.1 Einstein gravity in higher dimensions

Let us consider a (4 + n)-dimensional Einstein gravity theory, with the n extra dimensions

compactified on a torus of radius R. We shall first consider the case when there are no

branes that could violate the translation invariance in extra coordinates.

The microscopic theory is characterized by its (4 + n)-dimensional Planck length l4+n

and we assume that it has N4+n species. The four-dimensional (4D) theory has its standard

four-dimensional Planck length lP and contains N4 species whose relation to N4+n we will

determine shortly. For distances r > R the theory behaves as a 4D Einstein gravity

with small corrections (that we shall ignore). For r < R the theory is essentially a (4 + n)-

dimensional theory, which, from a 4D point of view, deviates substantially from 4D Einstein

gravity. In this higher-dimensional model the analogue of (1.3) reads:

lSCBH = l4+n(N4+n)1/(n+2). (4.1)

This scale lSCBH is also compatible with our definition of the cutoff lUV, since gravitational

interaction among elementary particles remains weak for all scales l ≥ lSCBH as we have

shown in section (3.1). We can therefore take any lUV ≥ lSCBH, but, for the sake of

definiteness, we shall simply assume that lUV = lSCBH.

As observed in [3], this setup provides an explicit example for verifying bound (1.2).

Indeed, geometrically, there is a well-known relation,

M2
P = M2

4+n(M4+nR)n , (4.2)

where M4+n = 1/l4+n is the 4+n dimensional Planck mass. From the 4D point of view, the

factor (M4+nR)n is the number of Kaluza-Klein modes per each higher-dimensional species

(
R

l4+n

)n

=
N4

N4+n
. (4.3)

– 7 –
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The effective gravitational coupling in 4 + n dimensions λG,n is given by

λG,n(l) = N4+n

(
l4+n

l

)n+2

(4.4)

which reaches unity at the scale lUV defined in eq. (4.1). Obviously, below this scale

λG,n(l) < 1, in particular λG,n(R) < λG(R).

λG,n(R) = N4
l2P
R2

(
l4+n

R

)n

= λG(R)

(
l4+n

R

)n

(4.5)

Let us turn now to the check of our assumptions and results about the properties of

BHs in this example. In the microscopic theory the BH metric is:

ds2 = −
(
1 − (RS/r)n+1

)
dt2 + 1

1−(RS/r)n+1 dr2 + r2dΩ2
2+n.

From this metric we see that TRS = (n + 1)/4π. Ignoring as usual numerical factors

this relation satisfies eq. (2.2). Concerning the dependence of the BH mass M on the

Schwarzschild radius RS let us first discuss the region RS > R. We may calculate the

(ADM) mass of the BH in the microscopic theory as M = M2
4+nRS(M4+nR)n. From the

4D point of view, using eq. (4.2), we find M = M2
P RS i.e. exactly the standard result

for a 4D Einstein theory. On the other hand, repeating the same procedure for RS < R

we recover the well-known result [12] RS = 1√
π

1
M4+n

(
M

M4+n

)1/(n+1) (
8Γ((n+3)/2)

n+2

)1/(n+1)
,

which, dropping numerical factors, turns into M = M2
4+nRS(M4+nRS)n. From the 4D

point of view the resulting M(RS) is

M = M2
P RS

(
RS

R

)n

. (4.6)

Here we can see explicitly that for the generalized theory the mass of a BH of radius RS

is smaller than the corresponding one in Einstein’s theory M < ME = M2
P RS . We can

also verify that d ln M/d ln RS = n + 1 which, using the expression for the temperature,

becomes d ln M/d ln RS = 4πTRS .

A non-trivial subtlety appears for compactification on manifolds that are not trans-

lation invariant in the compact dimensions [13], e.g. when space includes branes with

localized species. In such a case, one seems to find a contradiction with the assump-

tion (2.1) about the universal thermal evaporation of semiclassical BHs. The BHs that are

not pierced by a given brane cannot evaporate into the species localized on that brane,

due to locality in the compact dimensions. This would naively suggest that there can be

semiclassical BHs that do not evaporate democratically, in sharp contradiction with our

assumptions. The resolution of this apparent conflict can be found by noticing that such

BHs are unavoidably time-dependent at the classical level. As shown in [13], BHs that

evaporate non-democratically cannot be classically static and evolve in time until the par-

tial evaporation rates into all the species equalize. This “democratization” process restores

consistency with our assumption (2.1).

– 8 –
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4.2 Weakly coupled string theory

In string theory, the UV scale is the string length lUV = ls. In weakly coupled string

theory the well known relation between the string length and the Planck length lP = lsgs

is expressed in terms of the string coupling constant gs. So in this case lSCBH = lP
√

N =

lsgs

√
N , where N is the number of massless string excitations. Inequality (3.3) implies

then that

g2
sN < 1. (4.7)

The effective gravitational coupling λG is given by

λG = Nl2P /l2s = Ng2
s (4.8)

and the bound (1.2) also implies the inequality (4.7). Such inequality defines what we

should really call “weakly-coupled” string theory. Let us remark that for very small string

coupling the mass of a string whose size is ls is given by Mc = Msg
−2
s = MP g−1

s . Such

a BH lies on the so-called “correspondence” curve [14, 15] between fundamental strings

and BH and indeed its entropy S = Sc = g−2
s can be computed either by the string or by

the BH-entropy formula. Here we wish to emphasize that weakly coupled string theory is

an example of a theory that contains semiclassical BH with sizes all the way down to the

cutoff scale ls but where, at the same time, BHs remain as classical as one wishes for all

length scales since MRS = g−2
s > N . Then, supposedly, they stop existing as BHs and

turn into ordinary weakly-coupled strings .

Supposedly in string theory there are no BHs smaller than ls, since at that point

BHs turn into ordinary, non collapsed, “large” objects [14, 16]. More exotic possibilities

can be considered, however, where BHs smaller than ls and with temperature higher than

the Hagedorn temperature Ms might exist. We have checked that, at least for BHs of

temperature smaller than T∗ ≡
√

MP Ms, our bound still makes sense.

5 Some physical consequences of the bound

We shall now discuss some physical consequences of the bounds derived in the previous

section and briefly mention previous discussions about the relevance of our bound. Several

applications of the bound (1.2) (e.g., for hierarchy problem, cosmology and physics of

micro black holes) where already discussed in [3, 4] (and references therein), and will not

be repeated here.

• Triviality of quantum gravity

By this we mean, in the standard sense of the word triviality (as in λφ4 quantum field

theory), that GN → 0 in the infinite energy cutoff limit, or equivalently in the lUV → 0

limit. This result follows immediately from (1.2): λG(lUV) = N(lUV)GN/l2UV < 1

implies that

GN <
l2UV

N(lUV)
. (5.1)

– 9 –
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Consequently, any attempt to renormalize a consistent extension of Einstein’s Gravity

with a finite fixed number of light stable species (including, for instance, N = 8

supergravity) will fail because the removal of the cutoff necessarily will make gravity

trivial in the infrared.

• The Sakharov induced gravity limit for a finite UV cutoff

In Sakharov’s induced-gravity limit the tree-level value of Newton’s constant is taken

to infinity, thus removing the Einstein-Hilbert term from the tree-level action. A

concrete example is string theory in the infinite-string-coupling limit where also the

tree-level kinetic term of the gauge fields vanishes. Inequality (5.1), which applies

to the physical renormalized coupling, implies that, in this limit, the renormalized

Newton constant will remain finite and bounded.

• String theory

We have already discussed how weakly coupled string theory satisfies our bound.

What about moderately or strongly coupled string theory? Such a situation is defined

by having a positive (and possibly large) VEV for the dilaton φ, since gs ∼ eφ. One

possibility is that the bound never gets saturated for all scales larger than ls. For ex-

ample, in some string-theory backgrounds it is known that the infinite string coupling

limit of the theory corresponds to the zero-coupling limit of another string theory.

An appealing alternative is that the bound gets saturated either at some finite value

g∗ of gs or as gs → ∞:

λG(g∗) =
NGN (g∗)

l2s
→ 1. (5.2)

If N is in the hundreds or thousands (as in the case of large unified gauge groups),

eq. (5.2) could provide an interesting value for the ratio ls/lP by making Ms approach

the GUT scale of ∼ 1016GeV. This can be contrasted with the perturbative situation

in which:
GN

l2s
∼ αGUT , (5.3)

giving, typically, Ms ∼ 1017GeV. It is clear that (5.2) agrees with (5.3) if αGUT ∼
1/N . However, the ’t Hooft coupling of the unified gauge theory is given by λGUT =

αGUTÑ where Ñ is of order of the rank (or the quadratic Casimir) of the gauge group.

In general we expect N ∼ Ñ2 ≫ Ñ since N is the total number of light species which

is roughly the number of gauge bosons. Assuming that also λGUT saturates in the

strong coupling limit, our bound would allow to lower the ratio Ms/MP relative to

its perturbative value [2].

Also for the strong-coupling limit more exotic possibilities exist. Of course, the

bound (1.2) is based on the existence of degrees of freedom that fall within our

definition of species, implying that they must be weakly-coupled at least within some

finite energy interval. If there exists a sensible limit of a strongly coupled string

theory allowing for such an interval, then the bound applies. This could be the case

– 10 –
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if, for example, the strongly coupled string theory allows a mass gap with the lowest

lying string zero modes being weakly coupled within that gap. The bound (1.2) then

would relate the width of that gap to the number of zero modes.

• Entropy bounds

In Einstein gravity with a fixed number of species the bound (3.1) implies a bound

on the Bekenstein-Hawking entropy of BHs SBH(RS) = M2
P R2

S ,

SBH > N. (5.4)

It is quite likely that one can argue directly in favor of (5.4) by using arguments that

rely on the generalized second law of thermodynamics [17] and hence that the validity

of (5.4) is more general. A saturation of the bound at some finite scale SBH(R∗) = N

is quite interesting since it may imply that the origin of BH entropy is entirely from

the matter sector.
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